



# Ground System Supply Chain Requirements Flow-Down for the Joint Polar Satellite System

Tim Bowser
Chief Safety and Mission Assurance Officer
October 22, 2014



## Where did we start?



- Started with a Standard Flight MAR
- Converted to a JPSS Ground Specific MAR
- Incorporated Code 300 Ground MAR Recommendations
- Put JPSS Ground MAR on contract with Raytheon Common Ground System (CGS)
- Flow down appropriate MAR sections to Raytheon Subcontractors
- Verified flow down through Raytheon Subcontractor SOW's and MAIP Compliance Matrices
- Performed Independent NASA Audits (Code 302 and On-site)
- Applied Lessons Learned and Updates



## Flow Down



#### **Goddard Space Flight Center**

## •JPSS Ground Mission Assurance Requirements (MAR) Doc # 474-00177

- Applicable to the following JPSS Ground development entities:
  - Raytheon Common Ground System (CGS)
  - Data Products Engineering & Services (DPES), Government Resource for Algorithm Verification, Independent Testing, and Evaluation (GRAVITE), Field Terminal System (FTS)
  - JPSS Flight Vehicle Simulator (FVS) and Flight Vehicle Test Suite (FVTS)

## •JPSS Ground Mission Assurance Implementation Plan (MAIP)

- •Defines common approach/activities "How To" document and each element above has its individual MAIP
  - Includes MA objectives and fundamental
  - Provides reference to subordinate MA/QA plans
  - Describes organization structure and roles and responsibilities
  - Implementation enforced via the MAR compliance matrix
  - Data Item Description (DIDs) as applicable to the JPSS Ground MAR
    - Supplier MAR Compliance Matrix also flown down and verified
    - Updates being provided as required



# **Provisions**



**Goddard Space Flight Center** 

## •JPSS Ground MAR Provisions

- Increased Quality involvement in JPSS Ground System
- MAR applicable to Prime & subcontractors
- Support NASA conducted audits, assessments, or surveys
- Comprehensive System Safety, RMA, and Software Assurance programs
- Participation in NASAs Integrated Independent Review Program
- MRB membership including Government representative as a voting member
- GIDEP & NASA Alert assessments
- Mishap reporting and investigation
- Calibration and ESD
- Comprehensive End Item Data Package
- GSFC 'Gold Rules'
- Participation in risk management process
- Supplier Quality



# Verification



- NASA Code 302 Audit of Raytheon/Aurora Common Ground System-June 2013 and 2014
- NASA MA In-Plant Software and Hardware Assurance Oversight and Internal Audit
- Fairbanks Command and Data Acquisition Station (FCDAS) Antenna Installation
  - Pre-Ship Review at L3/ Datron, Simi Valley, CA
  - Oversight to the successful installation and site acceptance testing of the new "4A" antenna, Fairbanks, Alaska
- Svalbard, Norway (KSAT)
  - SG-60 Installation
    - Participation in the PSR of new receptors planned for Svalbard (SG-60)
    - Oversight to the successful installation and site acceptance testing
  - SG-4 Refurbishment
    - L3/Datron Gear replacement for SG-4
      - Participation in planning/coordination discussions
      - Review of safety procedures
      - Safety and Mission Assurance Oversight during installation
- Raytheon Common Ground System Block 2.0 Hardware shipment/receipt/installation
- GRAVITE, FVS and FVTS upgrades



# SMA Facility Oversight NOAA Satellite Operations Facility (NSOF)





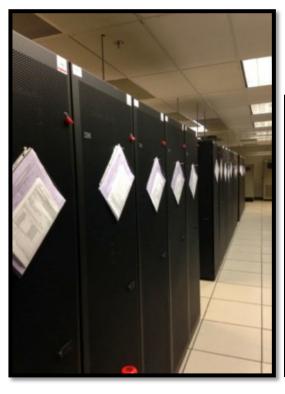






- Monitoring of ongoing GSA conducted facility improvement efforts
  - On-site x-raying evaluation survey to verify safety procedures and precautions
  - Data Center Core Drilling
  - Installation of pipes
- Review of ESD procedures
- Receipt/Inspection/Placement of Block 2.0 Hardware
- Hardware Installation and audits




# SMA Facility Oversight NOAA Satellite Operations Facility (NSOF)



**Goddard Space Flight Center** 

# **Interface Data Processing Segment (IDPS)**

**Command, Control and Communications Segment (C3S)** 



**GRAVITE Servers** 





NASA and Raytheon Safety and Mission Assurance witnessed all installation of new equipment and continuously monitors existing equipment in concert with NOAA facilities management and safety.



# **Key Supplier Site Visits and Partnerships between Raytheon/NASA/Vendors**





Situational Awareness and Improved Communications on Network Services



# 4A Antenna Installation NOAA Gilmore Creek Fairbanks, Alaska July 2013





- Performed independent safety oversight of Fairbanks Receptor Deployment and Installation
- Lessons Learned from this antenna installation captured to assist in the SG60 Antenna Installation in Svalbard, Norway
- Review of site safety hazards and mitigations for future activities



# 4A Antenna Installation NOAA Gilmore Creek Fairbanks, Alaska July 2013





L3/Datron Installed.
Raytheon Site Acceptance.
NASA SMA witness.





# SG-60 Antenna Installation Svalbard, Norway August 2013



**Goddard Space Flight Center** 





L3/Datron Installed.
Raytheon Site Acceptance.
NASA SMA witness.





# SG-4 Antenna Refurbishment May 2014





**Kongsberg Satellite Services (KSAT) Svalbard, Norway** 



# SG-4 Antenna Refurbishment May 2014



- Replace 6 Gears
- 2-Elevation, 2-Azimuth, 2-3rdAxis
- Replace 6 Brushless Servo motors
- 2-Elevation, 2-Azimuth, 2-3rdAxis
- Replace 3 Servo Cabinets
- Elevation, Azimuth, 3rd Axis Servo Cabinets
- Replace 1 DEU
- Replace 1 Tracking Receiver
- Clean and Dress Bull Gears
- Perform scheduled maintenance





# SG-4 Antenna Refurbishment May 2014





Removal of Elevation gear and motor





# Summary



- Developed Safety and Mission Assurance Requirements for a Significant Ground System that covers several missions
- Infused Safety, Quality, Reliability, Availability and Maintainability into typical COTS type products
- Identified and Mitigated 77 Safety Critical Hazards, 5 of which included Flight Commands and Controls
- Eliminated Single Points of Failure through Ground Availability Reliability Working Groups (FTA's/FMECA's)
- Validated and Verified the Implementation of the Mission Assurance Requirements Flow Down to Prime, Subcontract and Site Support Contractors
- Witnessed Deployments to Assure Quality and Ensure Safety